Wernicke’s Encephalopathy: An Overlooked Cause

Lloyd Godfrey Muzangwa1,2, Carlos Rivera1, Charlota Jurcik1, Joseph Bibawy3, Jay M. Nfonoyim1, Vaithilingam Arulthasan1, Jose Luis Valdes Bracamontes1, Razi Syed Haq1,2 and Samuel J. Beaujean1,2

1Department of Medicine, Richmond University Medical Center, Staten Island, NY, USA
2St George’s University, School of Medicine, Grenada, West Indies
3Department of Radiology, Richmond University Medical Center, Staten Island, NY, USA

Correspondence to:
Dr. Lloyd Godfrey Muzangwa, PhD
Richmond University Medical Center
Staten Island, NY, USA
Tel: 5163018406
E-mail: lmuzangwa@sgu.edu

Received: February 14, 2019
Accepted: March 25, 2019
Published: March 27, 2019

Copyright: © 2019 Muzangwa et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC-BY) (http://creativecommons.org/licenses/by/4.0/) which permits commercial use, including reproduction, adaptation, and distribution of the article provided the original author and source are credited.

Published by United Scientific Group

Abstract

A 66-year-old female patient with a past medical history of obesity and ORBERA® intragastric balloon placement presented with Wernicke’s encephalopathy (WE) features without social history of alcoholism. The patient was subjected to ORBERA® balloon bariatric procedure in Egypt and subsequently developed episodes of uncontrolled emesis which prompted removal of the intragastric balloon placement one month later. Two weeks after removal of the intragastric balloon placement, vomiting still persisted. Patient suddenly developed altered mental status and weakness which prompted admission to our hospital. Initial clinical examination was largely inconclusive, bilateral horizontal nystagmus was noted after subsequent days. A tentative diagnosis of WE was made based on clinical presentation and magnetic resonance imaging (MRI) scan results; vitamin B1 (thiamine) levels were ordered but were still pending. Empiric treatment with vitamin B1 infusion was initiated which resulted in improvement of both motor function and cognitive functions. Patient was given 200 mg IV TID for 8 days, then 100 mg po for 6 months. Patient was also started on folic acid and vitamin B12. WE diagnosis was supported one week later after lab results showed low vitamin B1 level (21 nmol/L). The patient was sent to rehabilitation center for 6 weeks then was able to be discharged home with a 6-month supply of vitamin B1 supplements. On discharge, memory deficits, loss of appetite and docility were noted.

Keywords

Intragastric balloon placement, Vitamin B1, Non-alcoholic Wernicke’s encephalopathy, Balloon placement reversal, Obesity, Thiamine, Gastric, Clinical nutrition, MRI, T2 FLAIR sequences, ORBERA®

Introduction

Wernicke’s encephalopathy (WE) is a neurological emergency caused by vitamin B1 deficiency. Chronic alcoholism is the most commonly known cause [1, 2]. In non-alcoholic population, history of total parenteral nutrition, eating disorders, multiple bowel surgeries, chemotherapy and conditions such as hyperemesis gravidarum are risk factors for WE [1, 3-11]. Despite several reports, diagnosis of WE is commonly delayed or overlooked [3]. Roux-en-Y gastric bypass has been frequently associated with nutritional deficiencies by causing early satiety and malabsorption. Complications are seen less often in restrictive procedures such as intragastric balloon placement [4, 5]. Of the few reported Wernicke’s syndrome involving OBERA® placement cases one out of the three reported cases were fatal. The fatal case was undiagnosed until autopsy.
The recent increase in the use of bariatric surgery and procedures worldwide has been associated with an increased incidence of WE [9, 10]. Of 104 reported cases of WE after bariatric surgery, 84 cases were gastric bypass [9]. Micronutrient deficiencies following gastric bypass were evaluated in 957 patients. A total of 236 (25%) had vitamin B12 deficiency and 11 (1%) had vitamin B1 deficiency. Frequent vomiting was a risk factor for these deficiencies in about 90% of the cases [9]. Continuous vomiting depletes vitamin B1 levels in 3–6 weeks. Vitamin B1 deficiency presents with neurologic impairments as in Wernicke’s encephalopathy and polyneuropathy [11, 12]. Altered levels of Magnesium can be seen in WE since the active form of thiamine: thiamine pyrophosphate, requires Magnesium as a cofactor [8].

The triad of WE (ophthalmoplegia, ataxia and confusion) is not always present which can interfere with clinicians from accurately making the diagnosis. Triad occurs only in about 30% of cases [3]. Early symptoms mostly presents as frequent headaches, fatigue, irritability and abdominal discomfort. These symptoms progress to spatial/temporal disorientation, apathy, agitation and hallucination [8]. Impaired cognition in patients with WE may preclude an accurate initial diagnosis. Fortunately, neuroimaging has improved diagnostic accuracy and also allows differentation of acute versus chronic stages of WE. MRI specificity is 93% on patients affected with this condition [13]. Acutely, these lesions can be visualized as increased intensity signal on magnetic resonance imaging which reflects an edematous state in the brain. Affected regions of the brain include the periventricular nuclei, medial vestibular nuclei, abducens nuclei, periaqueductal gray matter, mammillary bodies, hypothalamic nuclei, tectal plate and thalamus. Chronic states reveal mammillary bodies’ atrophy, cortical thinning, sulcal widening and ventriculomegaly [2].

Impaired anterograde amnesia, fatigability, awareness and consciousness, as seen in this case, has been associated with lesions to the mammillary bodies [8, 14] and, the latter, periaqueductal gray matter [15]; these anatomical site were hyperintense on MRI. Other symptoms such as conjugate horizontal gaze on physical examination can be explained by hyperintensity located at abducens nuclei [16]. Periventricular nuclei injuries, again noted on MRI, have been associated with urine incontinence since it is part of the supraspinal brain circuity regulating micturition [17]. Medial vestibular nuclei injury has been linked to symptoms like ataxia of gait and stance, dizziness and vertigo [18]. Cranial nerve palsy occurs due to an injury on cranial nerve VI nuclei. Patients are unable to produce a conjugate horizontal gaze on physical examination. Fortunately, abducens function improves shortly after parenteral administration of Thiamine [16]. Mammillary bodies along with the dorsomedial and anterior nuclei of the thalamus play an active role in memory formation. More specifically, lesions in the mammillary bodies have been implicated with anterograde amnesia, fatigability and unawareness [14]. MRI findings along with clinical signs and symptoms provide reliable approach to diagnose WE [15].
The WE treatment was often insufficient, specifically ignoring low parenteral thiamine levels (77.2%). In case of suspicion, thiamine levels should be tested and treated adequately with parenteral thiamine supplementation [10]. Current guidelines for bariatric surgery suggest preventive thiamine supplementation (12 mg) in multivitamin treatment for all patients undergoing surgery, but higher doses for patients with suspicion for deficiency [7]. All bariatric procedures can lead to deficiencies and therefore to WE. WE can be fully prevented by supplying prophylactic thiamine given either parenterally in vomiting patients or orally in non-vomiting patients [10]. WE onset suggests that bariatric patients remain more vulnerable to vitamin B1 deficiency for life, and therefore require lifelong routine follow-up on their B1 status [10].

Conclusion

The incidence of WE after restrictive bypass procedure has increased; yet, many physicians are not aware of it. Our patient visited two separate hospitals for persistent vomiting before being admitted at our facility, however WE suspicion was overlooked. From this case we emphasize the importance of having a high suspicion index for vitamin deficiencies in patients with any history of intragastric balloon/ bariatric procedure and prolonged unretractable emesis. We also want to highlight that WE can still develop even if intragastric balloon placement is reversed. In the absence of the classic triad, MRI imaging can play a crucial role in the diagnosis of WE. The prognosis of WE depends on prompt diagnosis and vitamin B1 supplementation. In our case patient was given 200 mg IV TID for 8 days, then 100 mg PO for 6 months. Patient was also started on folic acid and vitamin B12. In the absence of early diagnosis and management, WE can evolve into Korsakoff syndrome or death.

Acknowledgements

We would like to thank our patient for giving us permission...
to report her case. We would also like to thank our patient’s family for help in providing history.

Conflict of Interest

The authors have no conflict of interest to be disclosed.

References

